Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37874717

RESUMO

The correlation between children's personal and family characteristics (e.g., demographics and socioeconomic status) and their physical and mental health status has been extensively studied across various research domains, such as public health, medicine, and data science. Such studies can provide insights into the underlying factors affecting children's health and aid in the development of targeted interventions to improve their health outcomes. However, with the availability of multiple data sources, including context data (i.e., the background information of children) and motion data (i.e., sensor data measuring activities of children), new challenges have arisen due to the large-scale, heterogeneous, and multimodal nature of the data. Existing statistical hypothesis-based and learning model-based approaches have been inadequate for comprehensively analyzing the complex correlation between multimodal features and multi-dimensional health outcomes due to the limited information revealed. In this work, we first distill a set of design requirements from multiple levels through conducting a literature review and iteratively interviewing 11 experts from multiple domains (e.g., public health and medicine). Then, we propose HealthPrism, an interactive visual and analytics system for assisting researchers in exploring the importance and influence of various context and motion features on children's health status from multi-levelperspectives. Within HealthPrism, a multimodal learning model with a gate mechanism is proposed for health profiling and cross-modality feature importance comparison. A set of visualization components is designed for experts to explore and understand multimodal data freely. We demonstrate the effectiveness and usability of HealthPrism through quantitative evaluation of the model performance, case studies, and expert interviews in associated domains.

2.
Healthcare (Basel) ; 10(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36141236

RESUMO

The worldwide spread of COVID-19 has caused significant damage to people's health and economics. Many works have leveraged machine learning models to facilitate the control and treatment of COVID-19. However, most of them focus on clinical medicine and few on understanding the spatial dynamics of the high-risk population for transmission of COVID-19 in real-world settings. This study aims to investigate the association between population features and COVID-19 transmission risk in Hong Kong, which can help guide the allocation of medical resources and the implementation of preventative measures to control the spread of the pandemic. First, we built machine learning models to predict the number of COVID-19 cases based on the population features of different tertiary planning units (TPUs). Then, we analyzed the distribution of cases and the prediction results to find specific characteristics of TPUs leading to large-scale outbreaks of COVID-19. We further evaluated the importance and influence of various population features on the prediction results using SHAP values to identify indicators for high-risk populations for COVID-19 transmission. The evaluation of COVID-19 cases and the TPU dataset in Hong Kong shows the effectiveness of the proposed methods. The top three most important indicators are identified as people in accommodation and food services, low income, and high population density.

3.
Sensors (Basel) ; 16(6)2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-27231916

RESUMO

Location information is a key element of participatory sensing. Many mobile and sensing applications require location information to provide better recommendations, object search and trip planning. However, continuous GPS positioning consumes much energy, which may drain the battery of mobile devices quickly. Although WiFi and cell tower positioning are alternatives, they provide lower accuracy compared to GPS. This paper solves the above problem by proposing a novel localization scheme through the collaboration of multiple mobile devices to reduce energy consumption and provide accurate positioning. Under our scheme, the mobile devices are divided into three groups, namely the broadcaster group, the location information receiver group and the normal participant group. Only the broadcaster group and the normal participant group use their GPS. The location information receiver group, on the other hand, makes use of the locations broadcast by the broadcaster group to estimate their locations. We formulate the broadcaster set selection problem and propose two novel algorithms to minimize the energy consumption in collaborative localization. Simulations with real traces show that our proposed solution can save up to 68% of the energy of all of the participants and provide more accurate locations than WiFi and cellular network positioning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...